杨彪

作者:发布时间:2024-04-01

科研论文:

[1]Yang B, Yan G, Wang P, et al. A novel graph-based trajectory predictor with pseudo-oracle[J]. IEEE transactions on neural networks and learning systems, 2021.SCI(中科院一区),影响因子:10.451

[2]Yang B, Zhan W, Wang P, et al. Crossing or Not? Context-Based Recognition of Pedestrian Crossing Intention in the Urban Environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2021. SCI(中科院一区),影响因子:6.492

[3] Biao Yang; Jinmeng Cao; Nan Wang; Xiaofeng Liu*; Anomalous behaviors detection in moving crowds based on a weighted convolutional autoencoder-long short-term memory network, IEEE Transactions on Cognitive and Developmental Systems. 2019, 11(04): 473-482. SCI(中科院三区),影响因子:3.35  引用:1

[4] Biao Yang*; Jinmeng Cao; Nan Wang; Yuyu Zhang; Ling Zou; Counting challenging crowds robustly using a multi-column multi-task convolutional neural network, Signal Processing: Image Communication, 2018, 64: 118-129. SCI(中科院二区),影响因子:3.93  引用:6

[5] Yang B, Cao J, Liu X*, Wang N, Lv J. Edge computing-based real-time passenger counting using a compact convolutional neural network[J]. Neural Computing and Applications, 2018: 1-13.  SCI(中科院二区),影响因子:4.20  引用:2

[6] Yang B, Zhan W, Wang N, Liu X*, Lv J. Counting crowds using a scale-distribution-aware network and adaptive human-shaped kernel[J]. Neurocomputing, 2019.SCI(中科院二区),影响因子:5.00  引用:3

[7] Yang B*, Cao J, Ni R, Zhang Y. Facial expression recognition using weighted mixture deep neural network based on double-channel facial images[J]. IEEE Access, 2017, 6: 4630-4640. SCI(中科院二区),影响因子:4.098  引用:27

[8] Yang B*, Cao J M, Wang N, Zhang Y, Cui G. Cross-scene counting based on domain adaptation-extreme learning machine[J]. IEEE Access, 2018, 6: 17029-17038. SCI(中科院二区),影响因子:4.098

[9] Wu W, Yang B, Wang D, et al. A Novel Trajectory Generator Based on a Constrained GAN and a Latent Variables Predictor[J]. IEEE Access, 2020, 8: 212529-212540.SCI(中科院二区),影响因子:4.098

[10] Song X, Zhan W, Che X, Yang B*. Scale-Aware Attention-Based PillarsNet (SAPN) Based 3D Object Detection for Point Cloud[J]. Mathematical Problems in Engineering, 2020, 2020.

[11] Yang B, Cao J, Zou L. Moving object detection based on on-line block-robust principal component analysis decomposition[J]. Modern Physics Letters B, 2017, 31(19-21): 1740040. SCI(中科院四区),影响因子:0.85

[12] Yang B*, Cao J M, Jiang D P, Lv J. Facial expression recognition based on dual-feature fusion and improved random forest classifier[J]. Multimedia Tools and Applications, 2018, 77(16): 20477-20499. SCI(中科院四区),影响因子:2.33

[13] Cao J, Yang B*, Nan W, et al. Robust crowd counting based on refined density map[J]. Multimedia Tools and Applications, 2020, 79(3): 2837-2853. SCI(中科院四区),影响因子:2.33

[14] He C, Yang B*, Chen L, et al. An adversarial learned trajectory predictor with knowledge-rich latent variables[C]//Chinese Conference on Pattern Recognition and Computer Vision (PRCV). Springer, Cham, 2020: 42-53.

[15] Yang B, Zou L*. Robust foreground detection using block-based RPCA[J]. Optik, 2015, 126(23): 4586-4590. SCI(中科院四区),影响因子:1.91

[16] Cao J, Yang B*, Nan W, Wang H, Cai Y. Robust crowd counting based on refined density map[J]. Multimedia Tools and Applications, 2019, 79: 2837-2853. SCI(中科院四区),影响因子:2.33

[17] Yang B, Cao J, Zhou T, et al. Exploration of Neural Activity under Cognitive Reappraisal Using Simultaneous EEG-fMRI Data and Kernel Canonical Correlation Analysis[J]. Computational and Mathematical Methods in Medicine, 2018: 3018356-3018356. SCI(中科院四区),影响因子:1.84

[18] Yang B, Lin G*, and Zhang W. An occlusion-adaptive tracker based on sparse representation using alternating direction method of multipliers.?Optik,?125.13 (2014): 3055-3059. SCI(中科院四区),影响因子:1.91

[19] Wang N, Yu J, Yang B, et al. Vision-based in situ monitoring of plankton size spectra via a convolutional neural network[J]. IEEE Journal of Oceanic Engineering, 2019.SCI(中科院二区),影响因子:2.86

[20] Wang N, Song A, Yang B. The effect of time-delayed feedback on logical stochastic resonance[J]. The European Physical Journal B, 2017, 90(6): 117. SCI(中科院四区),影响因子:1.51

[21] Wang N, Zheng B, Zheng H, Yang B. When underwater degraded images meet logical stochastic resonance[J]. Nonlinear Dynamics, 2018, 94(1): 295-305. SCI(中科院二区),影响因子:5.05

[22] Yang B, Cao J, Wang N, et al. Counting congested crowds under wild conditions with a multi-task Inception network[J]. Communications in Information and Systems, 2017, 17(1): 1-24.ESCI检索)

[23] Yang B, Ni R. Vision-based recognition of pedestrian crossing intention in an urban environment[C]//2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, 2019: 992-995.EI检索)

[24] Yang B, Cao J, Ni R, Zou L*. Anomaly detection in moving crowds through spatiotemporal autoencoding and additional attention[J]. Advances in Multimedia, 2018, 2018: 2087574. EI检索)  

[25] Yang B*, Zhang Y, Cao J, Zou L. On road vehicle detection using an improved faster RCNN framework with small-size region up-scaling strategy[C]//Pacific-Rim Symposium on Image and Video Technology. 2017: 241-253. EI检索)

[26] Cao J, Yang B*, Zhang Y, Zou L. Crowd counting from a still image using multi-scale fully convolutional network with adaptive human-shaped kernel[C]//Pacific-Rim Symposium on Image and Video Technology. 2017: 227-240. EI检索)

[27] 杨彪. 基于工作预测与环境条件的行人过街意图识别[J]. 汽车工程.EI检索)

[28] 杨彪, 林国余*, 张为公. 无重叠视域摄像机网络拓扑自适应学习方法[J]. 东南大学学报:英文版, 2015, 31(1):61-66. EI检索)

[29] 杨彪, 林国余*, 张为公. 结合Lab模型与EHOG特征的摄像机离散视域人物外表匹配[J].?东南大学学报:英文版, 2012, 28(4):422-427. EI检索)

[30] Yang B, Lin, G*. Y., & Zhang, W. G. (2013). An Embedded System Used as Intelligent Node of Distributed Surveillance. Applied Mechanics and Materials, 475–476, 763–766. https://doi.org/10.4028/www.scientific.net/amm.475-476.763 EI检索)

[31] 杨彪, 林国余*, 张为公. 融合残差Unscented粒子滤波和区别性稀疏表示的鲁棒目标跟踪[J]. 中国图像图形, 2014, 19(5):261-268.

[32] 杨彪, 林国余, 张为公. 基于自适应加权二部图的多特征目标匹配[J]. 常州大学学报(自然科学版), 2015, 27(3):66-69.

[33] 江大鹏, 杨彪*, 邹凌. 基于LBP卷积神经网络的面部表情识别[J]. 计算机工程与设计, 2018, 39(07):179-185.

[34] 曹金梦, 倪蓉蓉, 杨彪*. 面向面部表情识别的双通道卷积神经网络[J]. 南京师范大学学报(工程技术版), 2018, 18(03):7-15.

[35] 曹金梦, 倪蓉蓉, 杨彪*. 基于多尺度多任务卷积神经网络的人群计数[J]. 计算机应用, 2019, 39(01):205-210.

[36] 张御宇, 倪蓉蓉, 杨彪*. 基于改进随机森林分类器在RGBD面部表情上的应用研究[J].?南京师大学报(自然科学版), 2019, 42(1):82-89.

[37] 张御宇, 倪蓉蓉, 杨彪*. 一种改进的FasterR_CNN对小尺度车辆检测研究[J].?现代电子技术, 2019, 42(11):99-103.

专利:

[1] 林国余, 杨彪, 张宇歆, 张为公, 戴栋; 一种基于修正加权二部图的无重叠视域目标匹配方法, 2019-08-13, 中国, ZL201410305768.X.

[2] 林国余, 杨彪, 张宇歆, 张为公; 一种无重叠视域多摄像机监控网络拓扑自适应学习方法, 2017-06-13, 中国, ZL201410266226.6.

[3] 林国余, 杨彪, 张为公, 李耀磊, 刘亚群; 一种基于自适应粒子滤波和稀疏表示的目标跟踪算法, 2016-04-27, 中国, ZL201310357510.X.

[4] 杨彪, 曹金梦, 张御宇, 崔国增, 邹凌; 一种利用多尺度多任务卷积神经网络对静止图像进行人群计数的方法,申请号:201711179075.0.

[5] 杨彪, 曹金梦, 张御宇, 吕继东, 邹凌; 加权卷积自编码长短期记忆网络人群异常检测方法,申请号:201810385430.8.

[6] 杨彪, 曹金梦, 张御宇, 吕继东, 邹凌; 面向面部表情识别的双通道卷积神经网络,申请号:201810599295.7.

[7] 杨彪, 曹金梦, 张御宇, 吕继东, 邹凌; 一种基于长短期记忆- 加权神经网络对视频人数计数的方法,申请号:201810446463.9.